Reg. No. :

Question Paper Code : 31213

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012.

Fourth Semester

Electronics and Communication Engineering

EC 1251 A — ELECTRONIC CIRCUITS — II

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Define transformer utilization factor.

2. Which power supply has a better voltage regulation, one with zero percent or one with 100% voltage regulation?

3. Why is quartz crystal commonly used in crystal oscillation?

- 4. State Barkhausen criterion for sustained oscillation.
- 5. List the advantage of tuned amplifier.
- 6. What do you understand by Q of a parallel tuned circuit?
- 7. Give any two applications of Schmidt trigger.
- 8. How is the frequency of oscillation varied in an astable multivibrator?
- 9. How boot-strapping improves linearity?
- 10. State the applications of relaxation oscillator using UJT.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a)

- (i) Explain the working of full wave rectifier with CLC filter and derive for its ripple factor. (12)
- (ii) Compare half wave and full wave rectifier with respect to output average voltage and ripple factor. (4)

 \mathbf{Or}

		(b)	(i)	Draw the circuit of a zener diode regulator and discuss how regulation is achieved. (8)
			(ii)	Describe how output voltage can be regulated with respect to line variations and load variations using SMPS. (8)
	<u>1</u> 2.	(a)	(i)	Explain the working of Colpitt's oscillator and derive the equation for frequency of oscillation. (8)
	-		(ii)	State why crystal oscillators are preferred for high frequency stability. Draw electrical equivalent circuit of crystal. (8)
				Or -
		(b)	Wit follo	h neat circuit diagrams explain the principle of operation of the owing two types of oscillators :
			(i)	Hartley oscillator (8)
			(ii)	Armstrong oscillator. (8)
• •	13.	(a)	(i)	Explain the working and frequency response of double tuned amplifier. (8)
			(ii)	Discuss the effect of cascading single tuned and double tuned amplifiers on bandwidth. (8)
*				Or
		(b)	(i)	Explain how single tuned, double tuned and stagger tuned amplifiers differ from each other. (6)
• •			(ii)	A six-stage IF amplifier uses double tuned amplifiers each tuned to 455 kHz. Each stage has a voltage gain of 10, Q of 20. All the tuned circuits are critically coupled. Calculate the over all voltage gain and bandwidth. (10)
	14.	(a)	(i)	Design an astable multivibrator to work at 1 kHz. (8)
			(ii)	Compare monostable and bistable multivibrators. (8)
	. *			Or
	•	(b)	(i)	Draw the circuit diagram diode clipper and clamper circuits and explain its working. (8)
			(ii)	Explain various triggering methods for bistable multivibrators. (8)
		•		01010

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

15. (a)

31.

- (i) Describe the application of time base generator in CRO with suitable waveforms. (8)
- (ii) Draw the circuit diagram of a transistor type Bootstrap time base generator for voltage ramp wave.
 (8)

- (b) (i) With the help of a circuit diagram explain the working of UJT sawtooth waveform generator. (8)
 - (ii) A UJT has a firing potential of 15 V. If it is connected across a capacitor of a series RC circuit with $R = 500 \text{ k}\Omega$ and C = 100 pF supplied by a source of 30 V d.c. Calculate the time period of the sawtooth wave generator. (8)

3